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LETTER TO THE EDITOR 

Multifractal quantum evolution at a mobility edge 

S N Evangelout and D E Katsanos 
Department of F'hysia, University of loannina, loannina, 451 10 Greece 

Received 27 August 1993 

Abstract. We describe the time evolution of a q w m m  wavepacket at the Anderson.meral- 
insulator m i t i o n  using a quasirandan model as an example of a system with a mobility edge. 
It is demonsuated that the dynamical wavefunction is mullifractal characterized by a coluinuous 
set of generalized spectral dimensions p(9) and we find is U - f (e) s p 3 . m  We also define and 
calculate an infinite hierarchy of diffusion exponents y ( q )  corresponding to all the displacement 
moments (Ir(t)l') describing the quantum evolution. A slow subdiffusive decay for the 'staying 
at the origin probability' ( P ( r ) )  averaged over all initial sites is obtained at the mobility edge. 

/ , 

The understanding of the dynamical properties of systems which exhibit an Anderson 
delocalization-localization transition [l] is a very difficult problem which still remains 
open 121. The general question of dynamics is best exemplified by considering the time 
evolution properties of a quantum wavepacket left to evolve in a lattice. In periodic 
systems unlimited ballistic motion with a constant velocity is expected while for strongly 
disordered systems absence of quantum diffusion may occur due to localization [3,4]. In the 
presence of weak disorder a quantum coherence diffusive regime exists [2] corresponding 
to timescales intermediate between the elastic scattering time r and a localization time 
q,. An immediate question which arises concems the nature of quantum evolution in 
systems near the critical point of the Anderson transition where one might expect a kind 
of diffusion to exist. In the present letter we propose a quantitative formalism based on 
multifractals 151 to describe scaling for all the moments of the important dynamical measures 
at the transition. Our findings suggest the absence of global scaling as normally expected 
for ordinary diffusion [6]. 

Firstly, we formulate the problem of critical localization dynamics as a quantum 
evolution process in a chain with a quasiperiodic cosine modulation of the potential which 
mimics the real three-dimensional (3D) problem [l]. It obeys the simple space (n)  and time 
( t )  quation 

where the site energies are E. = Acos(2rrun). the hopping matrix elements between the 
n and n i 1 sites are V = 1 and U is an irrational number, such as the inverse golden 
mean (6 - l ) p ,  usually approximated by truncating its continued fraction representation. 

t Also at: Research Center of Crete. Institute for E l m n i c  Structure and Lasers, Heraklion PO BoxlS27. Crete. 
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The static version of the above equation has been studied many times before [7] and is 
known to display an Anderson localization-delocalization transition occuring at A = 2 [8]. 
When A e 2 for all states and for almost every U solutions of (1) are believed to be 
extended. Similarly for A > 2 they are known to be localized with an inverse localization 
length proportional to logA [8]. Precisely at the transition point A = 2 the density of 
states is a Cantor-set-like singularly continuous object [9] and the wavefunction is a curious 
intermediate between extended and localized states [IO]. The critical specba show exponents 
lying in the range [0,42,0.55] with a density support leading to DO = 4 [9]. The critical 
wavefunctions are measures which fluctuate on all scales and have also been shown to 
display multifractal properties [IO]. One may expect that the static properties will, somehow, 
be reflected in the corresponding dynamics, which is the concern of the present study. 

We exploit the quasirandom model of (I) at the critical point, by numerical simulation, 
viewed as an initial value problem with +"(t = 0) = S,,, and no = 0. The quantity of 
interest for the quantum evolution is @&) which can be found either via the computed 
eigenvectors C'j) and the eigenvalues Ej of the corresponding Hamiltonian matrix 31 by 

+"(t) = (n~exp(-i~t)lno) C~, ! j '~ , ! i '*exp(- i~ . r  I )  (2) 
1 

or by integrating directly (I)  using a finitetime-step Runge-Kutta method [ll]. In fact, 
we have tried both methods, which gave similar results in all the cases we examined. In 
figure I(a) we illustrate the theme of the letter by showing our results for the wavepacket 
dynamics at the critical point of the Anderson metal-insulator transition. We view in a 
space-time@-t) plot the normalized absolute value l$rn(r)12, which is the probability for 
finding the electron on lattice site n at time I. Since the model is deterministic it is sufficient 
to achieve convergence of the numerical results as our system size increases. The converged 
data shown in the figure were obtained for the longest chain length (N = 17 7 11) which 
is a Fibonacci number by using as a rational approximant of U .  We ensure that 
the wavepacket does not reach the ends of the chain so that we can study unlimited time 
evolution. In figure ~ ( b )  the variety of d e s  for ~ @ ~ ( t ) l z  at two different times can be 
clearly seen in the chosen log scale for the squared amplitude. The spatial multifractal 
fluctuations are shown to increase with time and eventually to dominate the dynamics. 

In order to understand the unusual critical dynamics displayed in figure 1 we propose 
a picture based on determining a set of generalized spectral dimensions p(q) with q E 
[-CO, +CO] for the timedependent amplitude l+&)l2 viewing it as a multifractal measure 
in time. In analogy with the static eigenvectors [IZ], we introduce the asymptotic (as 
t + CO) scaling of the participation moments 

N I 2  

In our picture the capacity dimension p(0) describes the evolution of the support L of 
the wavefunction versus time and we find ordinary diffusive critical evolution of L with 
~ ( 0 )  = 1. We expect that DO is related to ~ ( 0 )  via 2 0 0  = p(O), where Do = 4 is the 
fractal dimension for the spectral support of the density of states 191. The information 
dimension p(1) can also be computed by studying the the time evolution of the entropy 
function S(t)  = - l$rn(t)I2 log(l@n(t)12), which asymptotically becomes proportional 
to [p(1)/2llog(t). The correlation dimension p(2) concerns the evolution of the time- 
dependent participation ratio Pz(t)  = C[+n(t)14, etc. In the ballistic limit (A = O), (1) 
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F q r e  1. (a) Spacetime plot describing the critical evolution of a quantum wavepacket initially 
placed at a single site no= 0, forthe model of (1) with A = 2 Note that the scale is logarithmic 
in time and the maximum always remains at the initial site no = 0. (b) WO snapshots of the 
probability amplitude [*n(f) l*  versus space n for times (a) f = IOWO, (b) f = 6OoW on a 
semi-log scale. Although Ihe evolution could be imagined as resembling a Gaussian, it is shown 
to be dominated by multifractal spatial fluctuations which increase as f in-. 

can be exactly solved exploiting the recursion properties of the Bessel functions, so that 
$At) = e-hn’2Jn(2t). where J. is the nth Bessel function. Then one easily obtains all the 
asymptotic relations which lead to trivial g l o w  scaling p(q) = 2 and the non-exponential 
atomistic decay law I*&)l* K t-’. In the localized case the evolution ceases and all 
p(q) = 0. In figure 2(0) we see how the various critical participation moments evolve with 
time. 

We were able to evaluate the critical exponents p(q) in a more efficient manner, by 
boxcounting techniques [SI, studying the spatial instead of the time distribution of the 
wavefunction whose support is L. Using p(0) = 1 we may use, instead of (3). the fixed-t 
relation 
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a 

Figure 2. (U) Log-log plot of the panicipation moments Pq(r) versus time f which allows 
the computation of the generalired exponents F ( q )  via the aymptotic scaling proposed by (3). 
(b)  The c-f(a) spectra for the I d  dimensions p(q )  found from (5) and (6). We o w n  
=,,,in Ei 0.27 and cm iJ 1.90 which specify d i n g  near the cenue and near the edge of the 
spatial I+n.(t)12-disUibulion, respectively. 

P&) o( L"-@"q'. (4) 

In figure 2(b) we show the computed singularity strength density function f ( a )  obtained 
from the M ( q )  via the Legendre transform [6,9,10] 
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f(a) = P ( q )  - (4 - I)/&). (6) 

The f ( a )  spectlwn takes values in a finite range [amj,,.a,-], while f ( a )  turns out to 
be a usual single humped function with p(0) = 1 at its maximum. The exponents 
%in = p(+m) N 0.27 and a,, = p(-oo) = 1.90 characterize the scaling properties 
where the measure is most concentrated and most rarefied, respectively. A statistical error 
for the exponents, which arises in taking the corresponding slopes, is monitored in our 
calculation by varying the system size until convergence is reached. 

However, scaling in the time-dependent displacement moments is more often studied in 
the context of dynamics [6]. We expect that the multifractal time evolution implied by the 
previous analysis should also affect these moments. We define, accordingly, the qth moment 
Rq(t )  = (lr(t)Iq) of the corresponding spatial probability distribution versus t and 
asymptotically (t + CO) we expect the scalig 

For example, an estimate of the wavepacket spread in space is usually given by the second 
moment Rz( t )  = (lr(t)I2} 1131, where y(2) = 1 for normal diffusion 161. The set of y(q). 
for q E [-CO, +CO], are the generalized diffusion exponents and in the case of ballistic 
motion y(q) = 2, for q > 0 and y(q)  = -2/q, for q < 0. Our definition of (7) fails for 
q = 0 where the fluctuations grow. We obtain y(O), instead, from a small-q expansion of 
both sides of (8) via the quantity C l o g  In -no[l@,&)lz (Y i y ( 0 )  logt; this means that y(0) 
specifies the logarithmic behaviour of the critical displacement evolution. In figure 3(a) 
we present our results for the moments Rq(t )  versus time t. Although for short enough 
times the motion starts as ballistic, asymptotically we obtain a set of y(q). q E [-CO, +CO] 

which are shown in figure 3(b). They lie within the range defined by y(-co) approaching 
zero and ~ ( + c o )  slightly above 1. These limits describe the scaling of the fastest and the 
slowest motions in the system, respectively. 

Our results also enable us to focus on the autocorrelation function or ‘staying at the 
origin’ probability P ( r )  = I@0(t)lz. that the ‘particle’ will remain on the initial central site 
no = 0 at a time instant t. The power-spectrum of @ ~ ( t )  measures the fluctuations of the 
local density of states. Moreover. P ( t )  is characterized by the exponent am” since the 
maximum of the amplitude, at any time, lies at the centre of the wavepacket. Subsequently, 
taking the appropriate limits from (3), the maximal scaling relation 

P(t) (Y t-@(”P (8) 

valid only at the critical point, is easily established. P ( t )  asymptotically goes to zero as - t-’ in the ballistic case and becomes eventually constant for the localized case. At the 
critical point we obtain ~ ( c o )  % 0.27, in agreement with previous considerations [14], 
which imply a very slow decay of correlations at the mobility edge. 

We also introduce the ‘retum probability’, averaged over all possible initial states no, 
that is 

(9) 

for an N-site system with periodic BC. The need for taking ( P ( t ) )  is that it fluctuates much 
less than P(t) being related to the total, rather than the local, density of stam. ( P ( t ) )  is 



L1248 Letter to the Editor 

I 
2 3 4 5 

LOGlO(TIMEI 

-16 -12 -8 -4 0 4 8 12 16 
9 

Figure 3. (a) Lag-log plot of the displacemen1 moments R&. defined by Q. versus I. Rz(0 
is the mean square displacement which defines the usual exponent YO). (bj The obtained 
critical generalized diffusion dimensions ~ ( 9 )  vemw q and also with the results for the ballistic 
case. For negative q the asymptotic forms are also shown. We find y(0) * 0.69, y(1 )  ~0.93 
and ~ ( 2 )  z= 0.96. The error bars a ~ e  of about the sizes of the circles. 

shown in figure 4. In the same figure the ballistic w e  is also demonstrated. The results 
again show an anomalous slow subdiffusive power law. 

It is also natural to ask whether a similar kind of anomalous diffusion is likely to 
occur at the mobility edge of the more realistic 3D case, where the eigenfunctions are 
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Figure4. ~ ~ ~ ~ g ~ l ~ ~ o f ~ e ~ ” ~ ~ ~ ~ ” ~ ’ l s i ~  ‘relumprobability’ (?‘(I)) (9)withpericdic 
BC. The ballistic and lhe critical limits are shown with decay laws I-’ and f-Oli, respectively. 
It is also worth noticing that lhe expnenw describing the dsays of P ( r )  and ( P  (I)) &e not the 
same. 

also multifractals [ 15,161. The inevitable contribution of all the states to the dynamics, 
via (2). which is not a problem for the quasirandom model, where all the states become 
simultaneously critical for the 3D Anderson model brings difficulties since the mobility 
edges are believed to be sharp for a given disorder (e.g. a box distribution of mean zero 
and width W).  However, at the critical value of the disorder W, = 16.5 the large majority 
of states in the spectrum also become simultaneously critical, as suggested from the W, 
versus E mobility edge trajectory phase diagram which displays an almost flat part at 
W, E 16.5 [ 17,181. Therefore, apart from small-density localized states lying at the band 
edges, the dynamics at W = W, should be dominated by critical states even for the 3D 
Anderson mode. This fact is also confirmed by level statistical studies which turn out at 
criticality to be independent of the energy band range considered [18]. 

In the present study using as a guide a quasirandom model which, albeit one- 
dimensional, shows critical behaviour, we derived novel results for the critical localization 
dynamics. We summarize our main findings. (i) The different moments of the wavepacket 
probability amplitude are found to grow with time via a set of independent exponents 
p(q), 9 E [-CO, +CO]. which can be understood within a thermodynamic multifractal 
description. Moreover, the support L of the wavefunction evolves as L 0: t”(o’p, ~ ( 0 )  % 1 
and the ‘staying at the origin’ local probability P ( t )  decays as 0: t-”(m)’2, p(w) x 0.27. 
(ii) The critical dynamics is also shown to involve a variety of displacement motions which 
are extracted via a novel set of exponents y ( 9 )  by scaling of the corresponding moments. 
Furthermore, (iii) we conjecture that a similar fractal analysis should apply to the mobility 
edge of the 3D system. Before we ask for the experimental implications of the complicated 
critical dynamics found in a variety of related systems, e.g. in describing slow relaxation 
phenomena in glasses, polymers, or the shape of the NMR resonance lines in small metallic 
particles, etc. our results call for a better understanding also by exploiting their relationship 
with statistical energy level correlation and fluctuation studies [18]. 
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